MAN1B1 Deficiency: An Unexpected CDG-II
نویسندگان
چکیده
Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases, due to impaired protein and lipid glycosylation. In the present study, exome sequencing was used to identify MAN1B1 as the culprit gene in an unsolved CDG-II patient. Subsequently, 6 additional cases with MAN1B1-CDG were found. All individuals presented slight facial dysmorphism, psychomotor retardation and truncal obesity. Generally, MAN1B1 is believed to be an ER resident alpha-1,2-mannosidase acting as a key factor in glycoprotein quality control by targeting misfolded proteins for ER-associated degradation (ERAD). However, recent studies indicated a Golgi localization of the endogenous MAN1B1, suggesting a more complex role for MAN1B1 in quality control. We were able to confirm that MAN1B1 is indeed localized to the Golgi complex instead of the ER. Furthermore, we observed an altered Golgi morphology in all patients' cells, with marked dilatation and fragmentation. We hypothesize that part of the phenotype is associated to this Golgi disruption. In conclusion, we linked mutations in MAN1B1 to a Golgi glycosylation disorder. Additionally, our results support the recent findings on MAN1B1 localization. However, more work is needed to pinpoint the exact function of MAN1B1 in glycoprotein quality control, and to understand the pathophysiology of its deficiency.
منابع مشابه
Somatic overgrowth associated with homozygous mutations in both MAN1B1 and SEC23A
Using whole-exome sequencing, we identified homozygous mutations in two unlinked genes, SEC23A c.1200G>C (p.M400I) and MAN1B1 c.1000C>T (p.R334C), associated with congenital birth defects in two patients from a consanguineous family. Patients presented with carbohydrate-deficient transferrin, tall stature, obesity, macrocephaly, and maloccluded teeth. The parents were healthy heterozygous carri...
متن کاملDeficiency of UDP-galactose:N-acetylglucosamine β-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId
The congenital disorders of glycosylation (CDGs) comprise a rapidly growing group of inherited multisystemic disorders that are commonly associated with severe psychomotor and mental retardation. The characteristic biochemical feature of CDGs is the defective glycosylation of glycoproteins due to mutations in genes required for the biosynthesis of N-linked oligosaccharides. Defects of the assem...
متن کاملCOG5-CDG: expanding the clinical spectrum
BACKGROUND The Conserved Oligomeric Golgi (COG) complex is involved in the retrograde trafficking of Golgi components, thereby affecting the localization of Golgi glycosyltransferases. Deficiency of a COG-subunit leads to defective protein glycosylation, and thus Congenital Disorders of Glycosylation (CDG). Mutations in subunits 1, 4, 5, 6, 7 and 8 have been associated with CDG-II. The first pa...
متن کاملDeficiencies in subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorders of Glycosylation.
Processing of the glycan structures on glycoproteins by different glycosylation enzymes depends on, among other, the non-uniform distribution of these enzymes within the Golgi stacks. This compartmentalization is achieved by a balance between anterograde and retrograde vesicular trafficking. If the balance is disturbed, the glycosylation machinery is mislocalized, which can cause Congenital Dis...
متن کاملGolgi function and dysfunction in the first COG4-deficient CDG type II patient
The conserved oligomeric Golgi (COG) complex is a hetero-octameric complex essential for normal glycosylation and intra-Golgi transport. An increasing number of congenital disorder of glycosylation type II (CDG-II) mutations are found in COG subunits indicating its importance in glycosylation. We report a new CDG-II patient harbouring a p.R729W missense mutation in COG4 combined with a submicro...
متن کامل